
An Evolutionary Autonomous Agent with Visual

Cortex and Recurrent Spiking Columnar Neural

Network

Rich Drewes1, James Maciokas1, Sushil J. Louis2, and Philip Goodman1

1 Brain Computation Laboratory
Biomedical Engineering Program

University of Nevada, Reno NV 89557, USA
drewes@cs.unr.edu

http://brain.cs.unr.edu
2 Evolutionary Computing Systems Lab

Department of Computer Science
http://ecsl.cs.unr.edu

University of Nevada, Reno NV 89557, USA

Abstract. Spiking neural networks are computationally more powerful
than conventional artificial neural networks. Although this fact should
make them especially desirable for use in evolutionary autonomous agent
research, several factors have limited their application. This work demon-
strates an evolutionary agent with a sizeable recurrent spiking neural
network containing a biologically motivated columnar visual cortex. This
model is instantiated in spiking neural network simulation software and
challenged with a dynamic image recognition and memory task. Since the
resulting agent or “virtual organism” initially contains many randomly
and recurrently connected neurons, we use a genetic algorithm to evolve
generations of this brain model that instinctively perform progressively
better on the task. Our investigations lay the foundation for further ex-
periments to resolve the question of whether autonomous agents with
spiking neural networks can take advantage of the proven theoretical
computational superiority afforded by spiking networks to outperform
their conventional, non-spiking counterparts for dynamic cognitive tasks.

1 Introduction and Prior Work

Ruppin’s recent review of evolutionary autonomous agent (EAA) research [1]
reveals that practically all such work to date has involved agents composed of
artificial neural networks (ANNs). The class of simulated neural networks called
ANNs includes both feedforward and recurrent networks built from threshold
or sigmoidal gates, such as McCulloch-Pitts networks [2], single and multilayer
perceptron networks [3, 4], Hopfield networks [5, 6], and many others. All these
models share the common feature that they do not model the timing of individual
spike events. In contrast, spiking neural networks models (SNNs) do explicitly
model the timing of spike events. SNNs are of course also “artificial” in the sense

2

that they are simulated and are not really living things, and some researchers do
classify SNNs as a subcategory of ANNs. However, in this paper we will use the
term ANN to refer exclusively to simulated non-spiking neural networks, and
SNN to refer to simulated spiking neural networks.

Maass [7] defines a taxonomy of three generations of neural networks. The
first two of these generations map to different types of non-spiking ANNs which
comprise the bulk of computer science research in neural networks, including
nearly all EAA work. Maass’ third generation is a certain subset of integrate-
and-fire spiking neural network. Maass demonstrates that this third generation
of spiking networks is strictly computationally more powerful than the first two
generations of non-spiking networks [7].

Despite the fact that spiking neural networks are known to be more powerful
than ANNs, most computer science and EAA research in neural networks con-
tinues to be conducted with ANNs. We think there are several reasons for this.
First, the realization that spiking networks are more powerful than ANNs is rel-
atively recent. Second, ANNs are easier to implement computationally, and they
are much faster to run in simulation. Thus there is a tradeoff between the po-
tential computational advantages of SNNs versus the cost of implementing and
running them. Third, ANNs have proven to be useful and interesting and pow-
erful in themselves, and they still provide rich topics for investigation. Fourth,
demonstrations of the computational superiority of spiking networks over ANNs
are currently mostly mathematical exercises with little proven practical conse-
quence. The role of spike coding in biological processing remains tantalizingly
obscure. Another way of saying this is that nobody yet knows a way to im-
plement a practical image recognizer using SNNs that takes advantage of the
theoretical computational superiority of spiking networks to result in a smaller,
more accurate, more robust, or faster network than the comparable ANN. Fi-
nally, many central challenges of ANNs (including difficult network design and
training problems, particularly for recurrent networks) are equally vexing with
spiking networks, so there are no apparent simplifications to offset the other dif-
ficulties inherent in working with spiking networks. And yet the most powerful
information processing neural networks available—human brains—are undeni-
ably recurrent spiking neural networks. Although there is no conclusive proof
that the spiking aspect of biological neural networks translates into their real-
world computational advantages, this hypothesis is the underlying motivation of
our own work, and this paper is a step toward exploring this idea.

The current limited state of knowledge of how complex recurrent neural net-
works represent and process information makes them well suited for exploration
with the EAA approach. That is, if thinking machines are too complex to design
explicitly, then perhaps we can evolve them by computer. And if we cannot un-
derstand how these machines represent and process information internally, we
can at least treat them as agents and learn about their internals indirectly by
conducting controlled experiments that lead to changes in behavioral capabili-
ties.

3

The evolutionary design of neural networks (EDNN) is worth reviewing
briefly as a general topic, not just in the context of autonomous agents. Design-
ing an ANN for a particular problem is a complex nonlinear search task. How
many hidden nodes should be present? What input features should be selected?
What values should the connection weights take? Certain search strategies work
satisfactorily for certain aspects of this problem, such as back-propagation for
training connection weights in feedforward ANNs with certain smooth transfer
functions. However, a more general approach to ANN design, and SNN design,
is to use evolutionary strategies such as genetic algorithms for the search. A
good survey of the state of EDNN research is given in [8] and more recently [9].
Both authors create taxonomies according to what features of the NN are being
evolved: connection weights, architecture, or both. Subclasses are also defined
for recurrent and feedforward network evolutions. However, both of these sur-
veys are restricted to evolutionary design of ANNs only—there is no treatment
of evolutionary design of SNNs specifically. This was not merely a question of
the authors’ selection of focus for their papers; there is very little work on this
topic at all. Exploring this area is another goal of our work.

2 Method

The next sections describe an evolutionary autonomous agent experiment de-
signed to provide a framework for exploring the computational power of certain
biological features, such as spiking networks and columnar organization, in dy-
namic cognitive tasks.

2.1 The Delayed Matching Task

Because our long term goal is to replicate features of biological cognition, the task
we have chosen to challenge our neural agents is modeled after a psychological
recognition and memory test rather than a more familiar ANN mapping task
such as image or pattern recognition. We considered such a mapping recognition
task to be a poor candidate for our goal of advancing understanding of cognition
for several reasons. First, these tasks are not dynamic. By this we mean that
there is no time constraint on the response. The input is presented, and when the
network settles, the answer is available at an output node. Indeed, conventional
ANNs have no notion of time implicit in them at all. (A number of extensions
to ANN models have imposed sequenced processing to permit recurrence, for
example [10], but these are still distinct from the actual notion of time.) In
contrast, biological organisms make decisions in real-time in response to the
environment. Second, ANNs in conventional mapping recognition tasks perform
well even though they are strictly feedforward; nothing is gained for them in
simple recognition tasks by being recurrent (and in fact making them recurrent
would disrupt most training paradigms). Real biological neural networks are
highly recurrent. To require agents to evolve functional recurrent networks, we
picked a task that requires transient memory. Recognition alone is a valuable skill

4

for an organism to have, no doubt; but combining recognition with short-term
memory is certainly essential for any truly cognitive system.

Many explorations of human and animal visual working memory involve a
delayed matching task [11]. In our variant of the delayed matching task, an
image is presented to the test subject momentarily and then removed. A short
time later, a second image is presented and the test subject must decide if the
image was the same as or different than the first image. The test subject is not
being asked to identify the images, or categorize them, but merely to determine
if the first image presented matches the last one presented. To make the test
more difficult, a “distractor” image can be interposed between the first and
second images. The complete set of inputs and correct outputs is shown in table
1. From the table it is apparent that this task can be viewed as a temporal
exclusive-or problem.

Table 1. Four possible input sequences for the delayed matching task

Input Sequence Number First Image Second Image Third Image Correct Output

1 Face Noise Face “Same”
2 Face Noise Tree “Different”
3 Tree Noise Face “Different”
4 Tree Noise Tree “Same”

Each agent is presented the four input sequences as shown, one sequence per
simulation run, and that agent’s reproductive success is determined by whether it
answers with the correct “same” or “different” response shown. The preparation
of the spiking input signals from these input image sequences is the topic of the
next section.

2.2 Preparation of Input Stimuli

We selected an image of a human face and an image of a tree to be the two test
images for this experiment. These are natural images (as opposed to synthetic
images like line drawings), and visually distinct. The images were pre-processed
as follows to get them into a form accessible to the agent neural network models.
First, the face and tree images were equalized to help ensure that the images
could not easily be distinguished by the networks based on spectral energy alone.
The images were then whitened to simulate the effect that retinal ganglion cells
and the lateral geniculate nucleus have on visual signals on the way to visual
cortex [12]. Spatial Gabor filtering is then performed to model current theory of
early visual processing [13]. The filtering is done at three orientations (horizontal,
vertical, and diagonal) and two scales (small and large). At this point in the
processing, representative images appear as depicted in figure 1. Each small
region of the filter outputs is then converted into a variable frequency spike
train. An entire input stimulus sequence consists of the concatenation of these
sets of spike trains. These spike trains are stored in data files for insertion, during

5

simulation, into the columns of the input area of the brain model as described
in section 2.3. Note that all work up to this point are performed algorithmically
in a preprocessing step, not via the agents’ spiking neural networks during the
actual agent simulation. This preprocessing step reduces the simulation time for
the agents and frees up computational resources for the later stages.

(a) Horizontal orienta-
tion, small filter scale

(b) Vertical orientation,
large filter scale

(c) Diagonal orienta-
tion, large filter scale

Fig. 1. The face image shown at three representative Gabor filter scales and orienta-
tions

The entire input sequence lasts 300 ms of simulation time. At time 100 ms,
the first test image is presented to the agent for a duration of 100 ms. This is
the face image for sequences 1 and 2, and the tree image for sequences 3 and 4.
At 200 ms, another distractor image is presented for a duration of 100 ms. At
300 ms, the second test image is presented for a duration of 100 ms. This is the
face image for sequences 1 and 3, and the tree image for sequences 2 and 4. For
the time period 300 ms to 400 ms, the spike outputs of the model’s two motor
areas (the “same” area and the “different” area) are recorded. These are used
to determine the model’s fitness, as described in section 2.5.

2.3 Brain Model

The neural network models in our autonomous agents are designed to be like
their biological counterparts, to the extent of current knowledge and given com-
putational constraints. Our assumption is that many or most of the biological
structures we are emulating exist because they are good at what they do—even
if we do not yet understand how it is they do it. It is certainly also possible that
some biological aspects we are emulating are merely incidental features that do
not contribute to function; which features fall in which category is a question we
hope to explore in future experiments.

For these experiments, the agents are recurrent column-structured SNNs with
about 14000 total neurons and about ten times that many synapses. The ratio of

6

synapses per cell in our model is considerably lower than in typical real biological
networks. Conductivity constants have been adjusted upward to compensate; the
resulting network behaves in a fairly realistic fashion in isolated tests, but almost
certainly our network lacks the memory capacity of a more connected network.
It may also be less capable in other respects.

Mammalian neocortex is, roughly, a 2mm thick multi-layered sheet of neu-
rons that is crumpled and folded around the rest of the brain [14, 15]. Many
investigators view neocortex as a six layer structure, though the physical real-
ity is not quite so tidy. Different layers of neocortex do seem to have different
characteristic patterns of connections, with, for example one layer having the
bulk of input connections from sensory organs, another layer having the bulk of
output connections to other cortical areas, and other layers having interconnects
with neighboring cells of characteristic proximity. Our agents’ neural networks
also share this layered structure, which we simplify to three functional layers
(roughly: input, output, and interconnect). In portions of mammalian cortex,
particularly visual cortex, groups of neighboring cells share certain patterns of
increased interconnectivity. These groups of more interconnected cells are called
cortical columns [16]. Groups of these structures seem to combine into even
larger structures called hypercolumns with a radius of up to about 1mm.

The larger scale organization and function of mammalian visual cortex re-
mains only partially understood, but a great deal has been learned about the
early stages [17]. We have attempted to incorporate some of this knowledge into
our model. Once in the brain, visual processing appears to be accomplished
roughly in stages, with some feedback from latter stages to earlier stages. Fur-
ther processing takes place in the brain with each stage occurring in a certain
portion of the visual cortex called a visual area. Conventionally, areas of the
visual system are numbered V1, V2, and so on. In our model, the spike trains
from the preprocessed input sequence are presented to hypercolumns organized
in a 5 by 5 array. This is the agent’s simplified V1, the first visual area of cortex.
Each portion of the input visual field is mapped to one of these 25 hypercolumns.
Within each hypercolumn is a further subarray of 2 by 3 columns. Each of these
columns receives input from a subportion of the Gabor filtered image at one
filter scale and filter orientation. This models the known selectivity of biolog-
ical visual cortex [18]. From the model’s V1 area, connections are made to a
modeled visual assocation area called VA. VA is also organized as an array of
hypercolumns, each containing a subarray of columns. Connections are made
from V1 to VA in an expanding pattern inspired by biological data that allows
the model to correlate features detected at different orientations and scales. In
real visual cortex further visual processing areas follow, but limited knowledge
about how those later areas function makes further modeling difficult.

The agent’s modeled VA area connects back to itself to provide the recurrence
believed necessary for memory and dynamic behavior. The VA area in the model
also contains feedforward connections to the two “motor” output areas, one
for the “same” result and one for the “different” result. Why these areas are
called motor areas, and how they are used in the model, is conceptually an

7

important part of our experimental design. We acknowledge the very limited
state of knowledge of how spike coding is used for information processing in the
brain. Nevertheless, it is possible to interpret the end result of an organism’s
information processing simply by looking at how it acts; that is, by looking at its
rate-coded motor output, where differential activation of one motor area results
in, for example, a forward rather than backward movement of a limb. At the
end of a simulation run, the number of spikes in the agent’s two motor areas are
tallied and compared. The output motor area with the larger number of spikes
is considered the agent’s response.

All synaptic connections in the model have their initial strength (technically,
their utilization of synaptic efficacy, or USE value [19, 20]) copied from the chro-
mosome to that model’s input file before the agent is simulated. These USE
values roughly correspond to the synaptic weight in ANN networks. For the
experiments described in this paper, there is no architectural variation in the
models from generation to generation (though that is planned for future experi-
ments). However, all synaptic connections were modifiable, so certain sub-regions
could become better connected or even selectively disconnected according to the
synapses that reached them. In this sense, some limited architectural variation
is actually possible, without the complication of variable chromosome size.

Connection strengths change from these starting USE values during simula-
tion of the brain through the modeled processes of biological synaptic facilita-
tion and depression. In this work, no long-term changes in the base USE values
(Hebbian learning) take place. (The neural network simulator supports Hebbian
learning, but this feature is disabled for the current experiments.) An individual
agent is not being trained within its lifetime on the recognition task. All train-
ing is done on the evolutionary timescale through crossover and mutation, and
any improvements in ability to perform on the delayed matching task happen
from generation to generation, not within a generation. Thus, this experiment
is seeking to breed an “instinct” to perform well on the delayed matching task,
not an organism capable of learning to improve its performance on the delayed
matching task from trial to trial. Each organism gets one and only one chance to
perform the delayed matching task in its lifetime. Later experiments may focus
on the issue of learning within a generation.

2.4 Chromosome

Each USE value is encoded in the chromosome as a two bit binary number, al-
lowing for initial connection strengths with three intermediate values plus zero
(disconnected). The chromosome encoded 10824 USE strengths for these exper-
iments. Note that because of technical limitations of the NCS input file format,
each USE value actually specifies the connection strength of a small group of
related probabilistic synaptic connections from one cell group to another cell
group, rather than specifying the strength of an individual synapse. Our exper-
imental setup also readily supports chromosomal storage of other values that
affect the simulation, for example global conductivity values. The experiments
reported here have those values fixed, however.

8

2.5 Fitness Function

The goal of the experiment is to evolve agents that can get the answer to all
four input sequences correct on the delayed matching task. The design of the GA
fitness function to accomplish that end is complicated by the discrete nature of
the task: an agent could get no answers correct out of the four input sequences,
one correct, two, three, or all four. A fitness function with only five steps would
not provide much guidance to an organism to help it improve its performance to
the next number of correct responses. To be most effective, the fitness landscape
for genetic search should be smooth.

The output of the agent consists of spikes in the “same” and “different”
motor areas. Whichever area contains the most output spikes during the result
period (300-400 ms) is that agent’s response to that input sequence. The number
of spikes in each output area during this period varies from about 10 to 1300
for each group of output cells. This high degree of variability could provide a
smoother range of potential fitness values if we consider the agent’s response not
merely to be correct or incorrect, depending on which output has more spikes,
but instead to be the ratio of the number of spikes found on the cells in the
correct output area to the number of spikes in the incorrect output area during
the measurement period. Call this quantity the recognition ratio f . There are
four such responses, one for each input sequence, which we call f1, f2, f3, and f4.
Naively, it seems that a good continuous fitness function might simply be given
by the sum of all fn; however, this is not the case. Randomly initialized models
invariably favor one of the two outputs over the other because of stronger random
synaptic connections to that area. This results in the agent initially answering
always “same” or always “different”, and getting two answers right and two
wrong. Thus two fn will be large, and two small. During genetic search, the
simplest tactic for an agent to increase fitness using this naive fitness function is
to further strengthen the synaptic connections to the favored areas, and decrease
connections to the other area. This results in two even larger fn and two very
small fn, and fairly high fitness, even though the agent is only getting two of
the four responses correct. This naive fitness function is unacceptable.

Because of the random bias that ends up favoring one of the outputs over the
other in initial, randomly created agents, it is actually quite difficult to develop
an organism that is capable of getting more than two answers correct. In order to
perform better than this, agents must evolve to have less of a gross bias toward
one output region or the other so that selected features in the input can be
detected and converted into enough output spikes in the correct output region
to offset any remaining gross bias toward the other region.

To prevent extremely large ratios on two of the input sequences from over-
whelming the overall fitness, gn is defined as follows:

gn = fn − (fn − 1.0)2 (1)

These gn have a maximum when the fn ratio is 1.5; thus, increasing ratios are
only rewarded to a point. Furthermore, since the slope of gn is steeper in the
neighborhood of 1.0 for values of fn less than 1.0 than for values greater than 1.0,

9

an agent’s fitness increases more by moving slightly closer to one more correct
answer than it does for the agent to get an existing correct answer “more”
correct (that is, for further increasing its fn ratio above 1.0 for that n). It is
desirable for the recognition ratios fn to increase above 1.0 if possible, because
that makes the output less ambiguous; however, it is more important to first get
another answer correct by bringing the fn above 1.0 for any remaining incorrect
responses. Finally, to give agents with more answers correct an extra fitness
advantage, the final fitness value is computed by adding together all gn and
multiplying by the fraction of correct answers.

The overriding design goal of the fitness function is to reward individuals who
get more responses correct (have the most recognition ratios greater than 1.0).
Among those individuals with the same number of responses correct, somewhat
greater fitness should be given to those who discriminate better among the two
responses; that is, those individuals with higher recognition ratios fn.

2.6 Genetic Algorithm

The genetic algorithm used in this experiment is a generic implementation with
roulette selection. The mutation rate is one per hundred USE elements per gen-
eration. The crossover probability is 0.66 (there is a one-third chance the parents
would be passed to the next generation with only mutation and not crossover).
Crossover is multipoint and variable, with between 1 and 100 points per off-
spring. Population size is 16, and elitist selection preserves the four most fit
individuals from each generation unchanged.

2.7 NCS: The NeoCortical Simulator

Once the brain models are built, they are run in the neocortical simulation soft-
ware package NCS [21] on a parallel cluster computer. NCS simulates networks
of tens of thousands of neurons and millions of synapses at the level of templated
spikes with modeled membrane channels and voltages and synaptic facilitation
and depression and Hebbian learning. NCS is an open-source C language appli-
cation written using the MPI multi processing library running on a commodity
GNU/Linux cluster.

3 Results and Discussion

At the outset it was far from clear to us whether any agents would arise that could
get all four answers correct in the delayed matching task. For a time it appeared
none would. After considerable experimentation we eventually found a single
agent that managed the feat after 800 lengthy generations of evolution. Once this
was achieved, further adjustments in the model architecture and parameters—by
and large consisting of simplifications—led comparatively quickly to the much
more adept agents described in this paper. These more compelling current results
are shown in figure 2. Any fitness value over 16 indicates that the agent got

10

answers to all four input stimulus sequences correct with a recognition ratio
greater than 1.0. A fitness of exactly 25 is the best possible, indicating the
maximum ratio of spikes in the correct output region to spikes in the incorrect
output region. During one of the runs, depicted in figure 3, an agent surprisingly
achieved very close to the maximum fitness in only 60 generations.

 0

 5

 10

 15

 20

 25

 0 20 40 60 80 100 120 140

F
itn

es
s

Generation

Average of maximum fitness of all trials
Average population fitness of all trials

Fig. 2. Average of maximum fitness, and average of population fitness, over five trials.
Population size: 16

It is interesting to reconsider this experiment from the point of view of one
of the evolved agents. The agent begins its existence at time 0. The environment
is dark, and there is only transient spiking activity for the first 100 ms. At 100
ms, the agent experiences the beginnings of spikes in the input columns of its
visual cortex. These spikes represent the first image in the input sequence. Using
its evolved instinct, the agent impresses some representation of the image in its
recurrent memory. At 200 ms, the incoming image changes to white noise. The
agent “knows” in some sense that this is just a distraction. Somehow, in the face
of the incoming noise, the agent keeps some representation of the first image alive
in the recurrent spiking network of its visual association area. After 100 ms of
this noise, the spikes from the third and final image are presented to the agent’s
visual cortex. The agent instinctively compares this new input in some way to
the memory of the first image it has retained in order to determine if the two
images are the same or different. If they are the same, the agent triggers increased
spiking activity in the first motor output (it moves left, perhaps). If the images
are different, the agent triggers increased spiking activity in the second motor

11

 0

 5

 10

 15

 20

 25

 0 10 20 30 40 50 60 70 80 90

F
itn

es
s

Generation

Maximum
Average

Minimum

Fig. 3. In this trial an agent achieved very close to the maximum fitness of 25 in only
60 generations

output (it moves right). Furthermore, the disparity in the number of output
spikes is not a small percent difference; in the most evolved individuals, it is a
compelling 50% difference for each of the responses—the maximum difference
for which the agent would be rewarded.

We have created a neural network-based evolutionary autonomous agent with
considerably more biological realism than other work. The biological realism of
our model extends to the columnar organization of the visual cortex, the Gabor
filter-modeled first stage of visual processing, and perhaps most importantly the
spiking network itself. We are incorporating biological features into our models
in the hopes that we will be able to gather evidence for the hypothesis that some
of these biological features lead to greater computational power on dynamic cog-
nitive tasks. We have not yet provided conclusive evidence for that hypothesis,
however the ease with which the spiking agents in this experiment evolved to
perform the rather complex dynamic memory task is encouraging. Forthcoming
experiments will attempt to generalize on many aspects of the one reported here,
with more complex dynamic tasks for the agents and an exploration of the lower
limits on the size of the models still capable of performing them. More direct
comparisons to ANN capabilities will also be attempted.

References

1. Ruppin, E.: Evolutionary autonomous agents: A neuroscience perspective. Nature
Reviews Neuroscience 3 (2002) 132–141

12

2. McCulloch, W., Pitts, W.: A logical calculus of the ideas immanent in nervous
activity. Bulletin of Mathematical Biophysics 5 (1943) 115–133

3. Rosenblatt, F.: The perceptron: A probabilistic model for information storage and
organization in the brain. Psychological Review 65 (1965) 386–408

4. Minsky, M., Papert, S.: Perceptrons; an introduction to computational geometry.
MIT Press, Cambridge, MA (1969)

5. Hopfield, J.: Neural networks and physical systems with emergent collective com-
putational abilities. Proceedings of the National Academy of Science 79 (1982)
2254–2258

6. Hopfield, J.: Neurons with graded response have collective computational prop-
erties like those of two-state neurons. Proceedings of the National Academy of
Science 81 (1984) 3088–3092

7. Maass, W.: Networks of spiking neurons: The third generation of neural network
models. Neural Networks 10 (1997) 1659–1671

8. Balakrishnan, K., Honavar, V.: Evolutionary Design of Neural Architectures: A
Preliminary Taxonomy and Guide to Literature. Technical report, Department of
Computer Science, Iowa State University, Ames, Iowa (1995)

9. Yao: Evolving artificial neural networks. Proceedings of the IEEE 87 (1999) 1423–
1447

10. Elman, J.L.: Finding structure in time. Cognitive Science 14 (1990) 179–211
11. Miller, E., Erickson, C., Desimone, R.: Neural mechanisms of visual working mem-

ory in prefrontal cortex of the macaque. J Neurosci Aug 15 (1996) 5154–5167
12. Dan, Y., Atick, J., Reid, R.C.: Efficient coding of natural scenes in the lateral

geniculate nucleus: Experimental test of a computational theory. J Neurosci May

15 (1996) 3351–3362
13. Olshausen, B., Field, D.: Sparse coding with an overcomplete basis set: A strategy

employed by V1? Vision Research 3311–3325 (1997)
14. Schmitt, F.O., Worden, F.G., Adelman, G., Dennis, S.G.: Anatomy of cerebral

cortex: columnar input-output organization. In Jones, E., ed.: The Organization
of the Cerebral Cortex. (1981)

15. Hubel, D., Wiesel, T.: Functional architecture of macaque visual cortex. Proc.
Roy. Soc. (London) 198B (1977) 1–59

16. Mountcastle, V.B.: The columnar organization of the neocortex. Brain 120 (1997)
701–722

17. Callaway, E.M.: Local circuits in primary visual cortex of the macaque monkey.
Annu. Rev. Neurosci 21 (1998) 47–74

18. Maldonado, P.E., Godecke, I., Gray, C.M., Bonhoeffer, T.: Orientation selectivity
in pinwheel centers in cat striate cortex. Science 276 (1997) 1551–1555

19. Tsodyks, M.V., Markram, H.: The neural code between neocortical pyramidal
neurons depends on neurotransmitter release probability. Proc. Natl. Acad. Sci.
USA 94 (1997) 719–723

20. Senn, W., Markram, H., Tsodyks, M.: An algorithm for modifying neurotrans-
mitter release probability based on pre- and postsynaptic spike timing. Neural
Computation 13 (2001) 35–67

21. Wilson, E.C., Goodman, P.H., Harris, Jr., F.C.: Implementation of a biologically
realistic parallel neocortical-neural network simulator. In: Proc. of the 10th SIAM
Conference on Parallel Processing. (2001) 11

