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Abstract

The NCS (NeoCortical Simulator) system is a powerful batch processing spiking

neural network simulator capable of efficiently working with networks of thousands of

synapses at a level of biological realism extending to membrane dynamics and multiple

ion channels. NCS is complex and can be difficult to use in several respects however,

and its fullest potential is difficult to realize both for small projects and large projects.

To address this problem, a variety of special purpose tools have been developed, but

these tools lack generality, power, flexibility, and integration with each other. This

thesis describes Brainlab, a set of tools designed to make working with NCS easier,

more expressive, productive, and powerful. Brainlab is an integrated modeling and

operating environment for NCS, based on a simple yet powerful standard scripting

language (Python).
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Chapter 1

Motivation and background

In the 1980s and 1990s, a growing realization of the limitations of artificial neural

networks, and also a desire to investigate questions of biology in simulation, led to

the creation of a number of biologically realistic spiking neural network simulation

software packages. NEURON[8] and GENESIS[4] were and remain among the most

popular of these systems. Though some improvements have been made in the ability

of these programs to handle large numbers of neurons and synapses, they remain more

at home modeling smaller numbers of very realistic neurons and synapses. There was

a need for a simulation system with a reasonably high degree of biological realism

that could also work efficiently with large numbers of cells (more than 10,000) and

synapses (more than 1,000,000). This thesis concerns such a program, called NCS (the

NeoCortical Simulator), and a toolkit designed to simplify its use, called Brainlab.

The remainder of this chapter will describe the development of NCS and some aspects

of its use that led to the creation of Brainlab.

1.1 NCS, the NeoCortical Simulator

NCS[19] began in 1998 as a serial implementation of a biologically realistic neural

network simulator written by researcher Philip Goodman of the University of Nevada,
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Reno, in the MATLAB[34] environment. Partial inspiration for the work came from

Goodman’s research fellowship at the Institute for Neuroinformatics at the University

of Zurich/ETH, and also the recent design of new modeling approaches that promised

considerable realism but also reasonable computational requirements[30, 31, 35]. The

resulting neural simulator program was novel in that it combined the efficiency of

templated AP spike waveforms (since the shape of those waveforms vary little within

a given biological neural network), with realistic cell membrane and ion channel dy-

namics to determine spike onset. Even with the speed provided by templated AP

waveforms, performance limitations of the MATLAB environment restricted this pro-

gram to simulation of relatively small numbers of cells and synapses.

To increase execution performance (or to increase the potential network size that

could be simulated in a given amount of time), Goodman collaborated with computer

science professor Sushil Louis and student Ali Etezadi-Amoli in 1999 to create the

first C version of the program. This was a fairly direct port of the MATLAB code

and it was still a serial implementation. The speedup over the MATLAB version was

approximately 10-fold. Further improvements to this code and the first parallel ver-

sion of NCS were implemented by student Keith Wesolowski also under the direction

of Louis.

In 2000, the program was largely rewritten by E. Courtenay Wilson[37], working

under computer science professor Frederick C. Harris, Jr., using the C++ language

and the MPI[7] standard parallel libraries. This was NCS version 3.

Starting in 2001, student James Frye, working under Harris, began another rewrite

to optimize and reorganize the code[18]. He removed virtually all object-oriented

features and the code was considerably tightened. Student Rich Drewes assisted with
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this effort. Numerous errors and inefficiencies were eliminated from the code. This

effort resulted in a new release of NCS version 3 in 2003, NCS version 4 in 2003-2004,

and NCS version 5 later in 2004. The NCS code remains today nominally a C++

program, but with C coding style and no significant use of C++ object orientation,

nor C++ standard template library, nor C++ I/O facilities.

Student James King took over maintenance of NCS in 2004 and also introduced

a number of feature enhancements, including a network socket-based communication

server for external programs to interface to NCS[22] (with early stage assistance from

Drewes), improved support for multi-compartment neuron models, and several new

model features including the recently characterized synaptic augmentation property

of cortex.

NCS is described in several conference papers and technical reports[28, 29, 38, 39].

User documentation for NCS is available at[21].

1.2 NCS applications

A number of research projects have used NCS:

• In 2002-2003 James Maciokas and collaborators used NCS to investigate a hy-

pothesis regarding entropy change through stages of bimodal (auditory and

visual) neural processing[20, 27, 28].

• In 2002-2003, Waikul and collaborators created a world wide web interface to

NCS to simplify design and submission of network models for simulation[36].

• In 2003, Juan Carlos Macera and collaborators created a first prototype demon-

stration of robot-to-NCS communication[25, 26].
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• In 2004, Jake Blake and collaborators created and simulated a model of auditory

neocortex[16].

• In 2004, Matt Ripplinger and collaborators created and simulated scalable

“sheet” neuronal structures[33].

• In 2004, Brian Opitz and collaborators studied the effect on information transfer

in a spiking neural network with selective knockout of channels in simulation[32].

• In 2004 Drewes and collaborators used a genetic algorithm to evolve a net-

work model for evolutionary autonomous agents to perform a delayed-matching

memory task using a neural network with layer-structured visual cortex[17].

All of these investigations were conducted within the Goodman Brain Computation

Laboratory[5], affiliated with the Biomedical Engineering Program[13] of the Univer-

sity of Nevada, Reno[12], where the NCS software itself was developed.

1.3 The NCS input file format (the .in file)

NCS reads a description of a neural network model and other simulation param-

eters from a plain text file whose filename is supplied to NCS as a command line

argument. For our purposes here it is not necessary to go into great detail about the

format of this file, but we do wish to describe it generally in order to explain some of

the shortcomings of working with it.

This input file, hereafter called a .in file after the convention of using .in as a

filename extension for such files, contains a variable number of subsections. Each

subsection starts with a line that contains the name of the subsection (which must be

one of a limited number of keywords permitted by the system) and ends with a line
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that contains END_ with the section name appended. The first subsection in a .in

file is the BRAIN section. In the BRAIN section of the file are defined global features

that affect the entire simulation. For example, a line beginning with JOB defines a

job name for the simulation. This portion of the .in file typically looks something

like that shown in Figure 1.1.

Some of the lines in the BRAIN section in that figure are references to additional

subsection blocks that must appear elsewhere in the .in file (the lines beginning

with COLUMN_TYPE, STIMULUS_INJECT, and REPORT for this example). The name of

the referenced object is the second item on the line, and that same name must be

BRAIN

TYPE AREA-BRAIN

FSV 10000.00

JOB E0_332

SEED -333

DURATION 80.0

COLUMN_TYPE col

COLUMN_TYPE datain0

COLUMN_TYPE keyin0

COLUMN_TYPE thal0

CONNECT datain0 datain0_1CELL ER SOMA

col layER ES SOMA E 1.000 10.000

CONNECT keyin0 keyin0_1CELL ER SOMA

col layL1 ES SOMA E 1.000 10.000

CONNECT thal0 thal0_1CELL ER SOMA

col layL1 ES SOMA E 0.500 10.000

CONNECT col layL1 ES SOMA thal0

thal0_1CELL ER SOMA E 0.500 10.000

STIMULUS_INJECT stimdatain0_0-inj-0

REPORT EMRep

OUTPUT_CELLS YES

OUTPUT_CONNECT_MAP YES

DISTANCE YES

END_BRAIN

Figure 1.1: The BRAIN section of a sample NCS .in file.
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specified as the second item on a TYPE line in another subsection that defines that

referenced object. For example, the .in file with the BRAIN section in Figure 1.1

makes a reference to a column named col and therefore the .in file would also need

something like that shown in Figure 1.2.

The COLUMN on the first of line of Figure 1.2 says that we are defining a cortical

column structure, and the next line says that the name of this column is col. The

block then identifies a number of layers that make up the column (the LAYER_TYPE

lines) which must point to a LAYER block with the appropriate TYPE name later in the

file. There are also some CONNECT blocks, each of which is one logical element broken

out onto two lines in this listing. These CONNECTs are logically part of this COLUMN

but also implicitly reference other subsections of the file, such as the type of synapse

to use for the connection.

COLUMN

TYPE col

COLUMN_SHELL col_sh

LAYER_TYPE layL1

LAYER_TYPE layEM

LAYER_TYPE layER

LAYER_TYPE layES

LAYER_TYPE layI1

CONNECT layL1 ES SOMA layEM ES SOMA

E 0.600 10.000

CONNECT layER ES SOMA layEM ES SOMA

E 1.000 10.000

CONNECT layER ES SOMA layES ES SOMA

E 0.600 10.000

CONNECT layI1 I1 SOMA layES ES SOMA

I 0.600 10.000

END_COLUMN

Figure 1.2: A COLUMN referenced from the BRAIN section in Figure 1.1.
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Some aspects of the .in file format should now be apparent:

1. Even relatively simple models will have very long input files.

2. Making a change in one place in the input file, for example changing the name

of an object or changing the pattern of connections in the model, could require

many coordinated changes throughout the .in file.

3. Because of the length of the .in file, it is very difficult to learn much about the

physical structure of a model by looking at the .in file.

4. Constructing a .in file manually could be very time consuming and prone to

error.

5. To run a model a number of times with a variation of some parameter (a common

experimental requirement) would require a version of the .in file for each run,

and the results would have to be collected separately.

We should also point out that though the .in file format has some notion of hierarchy,

since objects can reference other objects, there is no support for creation of macros

or any other sort of higher level abstractions in the .in file. Similarly, there are

no looping constructs permitted in a .in file. Numerical calculations are also very

limited. There are a few historical quirks of the .in file format that further complicate

working with the file directly. For example, though a LAYER can be defined once and

reused in multiple COLUMNs, a COLUMN can only be referenced once. To be reused, a

COLUMN must be completely defined again with the same structure and a new name.

The lack of a proper type-of abstraction for COLUMNs seems to be simply a case of

mistaken implementation. There are indications that a proper type-of abstraction
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for COLUMNs was designed, and that the BRAIN section of the .in file was intended to

contain references to COLUMN_SHELL blocks instead of COLUMN blocks as is currently

the case. Regardless, the current state of affairs prevents truly hierarchical models

from being represented logically in a .in file.

1.4 Common NCS usage pattern

In our experience, users of NCS typically progress through several stages of a

common pattern of usage.

1.4.1 Manual .in file creation in an editor

Initially a new user of NCS will typically experiment with creating a brain model

(.in file) by hand in a text editor. Quite often the editing is done on a personal

workstation separate from the actual compute cluster. Then the user will copy the

file to the cluster, invoke the NCS simulator on the file, and copy the output report

files back to the personal workstation for analysis. This is in the best case; in reality,

hand edited .in files are prone to syntactical and typographical errors, and even

getting one file to simulate properly often requires anywhere from a few to a few

dozen edit-copy-run attempts.

After using NCS this way for a while, most users working with network models of

any significant complexity create some sort of partially automated .in file generation

tool: a preprocessor in a scripting language.

1.4.2 Scripted Preprocessor

The next step usually taken by serious users of NCS is to enlist a scripting lan-

guage, for example MATLAB[34], as a tool to automate some of the tedious aspects
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of manual .in file generation. Often these preprocessors contain an intermixture of

literal text chunks and algorithmically generated sections (for example, loops over x

and y dimensions to create arrays of columns and connections among them).

There are a number of problems with this approach. It is still prone to error; there

is no guarantee that the output .in file is coherent. Lack of convenient abstractions,

or even standard naming conventions, can lead to situations where the model cannot

easily be extended to allow some new model feature, without extensive recoding.

Time is spent developing the preprocessor that could better be spent on the design

of the models themselves.

Most users of NCS actually seem to stop at this stage and live with the difficulties.

The resulting preprocessor systems are generally suitable only for one problem, the

one they were created for, and they are cumbersome to use and inflexible. Model

changes typically do require extensive recoding. While one user can sometimes reuse

chunks of code for a later project, we are not aware of NCS users making significant

use of others’ preprocessor code in their own projects. Each user reinvents the solution

and rediscovers the pitfalls of the approach.

1.4.3 Templated Preprocessor

There have been limited efforts by others to create templated preprocessors that

would accept some higher-level abstractions and map them to a .in file for use by

NCS. One such project by King saw some limited use. This tool is a templated

preprocessor written in C. It accepts a statically defined file, in a new format, that

contains a templated description of some higher level abstractions (most significantly,

a “sheet” abstraction that is basically an array of columns). The tool outputs another

file with the higher-level abstractions reduced to component parts expressible in the
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standard NCS .in format. Some portions of the new input file are simply transcribed

literally to the generated .in file.

This tool was used in at least one project[33] but it is deficient in several important

ways. The tool did not support the creation of new abstractions by a user, it simply

provided a few new ones (like the sheet) for one particular project. Since it was coded

in C, it was not easy for non-programmer users of NCS to extend it in any way.

1.5 Why Brainlab?

For small projects, NCS requires considerable setup overhead and complication

to accomplish even the simplest tasks, and the batch processing work flow makes

experimentation difficult and time consuming. For large scale projects, NCS lacks

extensibility without resorting to C programming, lacks convenient model generation,

and lacks support for some important high-level abstractions and no ready means to

add them. The Brainlab toolkit offers an experimenter the following enhancements

over working directly with NCS:

1. An interactive shell for simple experimentation, making NCS a more suitable

educational tool for learning the behavior of spiking neural networks and also a

more convenient platform for experienced users to explore the behavior of new

cell or network elements.

2. A convenient platform for parameterized control of sets of experiments.

3. A convenient platform for scripted regression testing of NCS itself, with flexible

output validation.

4. Scripted, algorithmic generation of neural network models rather than NCS’s
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native static file specification of networks.

5. Convenient, integrated, graphical on-line reporting and plotting of cell spiking

activity.

6. Convenient, integrated, on-line three-dimensional plotting of neural network

architecture for expository and diagnostic purposes.

7. Support for higher level abstractions than those provided natively in NCS (for

example support for areas, composed of arrays of columns, and a variety of

distinct area-to-area synaptic connection patterns), and an easy way to add

new ones.

8. Support for lower level abstractions too unwieldy to reasonably manage in native

NCS (for example, columns where all cells are enumerated and independently

addressable).

9. A container for a standard and extensible library of network building blocks (for

example channels, cell types, columns, spike templates), where all components

are guaranteed to interoperate, utilize consistent naming conventions, and may

be manipulated programmatically as variable objects rather than text chunks.

10. A more convenient, higher level, object-oriented representation of neural net-

works that hides many complexities and inconveniences inherent in NCS’s native

.in file format.

11. The ability to convert a neural network description into a chromosomal repre-

sentation suitable for use with a genetic algorithm.
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12. The ability to conveniently and transparently extend all of these capabilities

without recourse to coding in NCS’s native programming environment (the

C/C++ language).

The remainder of this thesis will describe Brainlab in more detail. Chapter 2

begins a tutorial-style introduction of some of Brainlab’s features, starting with simple

model building, working with the standard component type library, loading NCS

report data, creating simple graphs, and viewing three-dimensional representations

of neural models. Chapter 3 provides a more detailed and concrete look at some of

the programming techniques used to create a real-world experiment with Brainlab.

In Chapter 4 we will briefly consider some of the design choices made during the

creation of Brainlab. Chapter 5 will conclude with a proposal describing how NCS

might be improved by taking advantage of a tighter integration with a Brainlab-like

modeling system, and a description of some enhancements planned for future versions

of Brainlab.
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Chapter 2

Brainlab

For my first serious research using NCS, I started using a MATLAB-based prepro-

cessor system to create the .in files for the simulations. (This MATLAB code was

initially derived from earlier work in our lab by Maciokas.) As I began extending this

code for my experiments I found it increasingly difficult to manage the preprocessor.

When my experiment required investigating variable model architectures explored

with a genetic algorithm, the preprocessor system became too unwieldy and complex

to reasonably use. I began to think about a more flexible, powerful, and concise mod-

eling system, and this effort resulted in the first version of Brainlab. The Brainlab

environment went through several more significant revisions as I required even more

flexibility for experiments testing a proposed information processing function for a

cortical microcircuit, which required complex input stimulus protocols and analysis.

Gradually Brainlab evolved from just a model development tool into an integrated

modeling and experimental environment for NCS.

The remainder of this chapter is an introduction to using Brainlab for modeling

and experimentation.



14

2.1 Creating a network model

In Brainlab, every brain model is an instance of a Python object class called BRAIN.

Creating a brain object is via the usual Python means:

b=BRAIN()

The variable b then refers to the newly created, and initially empty, brain model.

Later we will discuss how to add neuron instances (and their containers, cortical

columns), synapses, and other object instances to the BRAIN object. But first, we will

describe in the next section the standard library of types of objects that each BRAIN

object contains.

2.2 Component type libraries

When a BRAIN object is created, it contains a default set of commonly used types of

neural network modeling components. (There are initially no instances of these types

in the brain model.) Component types include ion channels, synapse facilitation and

depression profiles, synaptic Hebbian learning parameters, cell definitions, and more.

These component types can be directly instantiated and then used for construction of

network models, or they can be modified in place and then used in a model, or they

can be copied to new types with different names and then the copies can be modified

and instantiated for use in a model. (Copying existing types will be demonstrated in

Section 2.2.6). The component types are contained in standard Python dictionaries,

and the keys of the dictionary are simply the text names of the components.
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2.2.1 Seeing what component libraries are available

Multiple libraries are permitted, and each has a name. The standard library of

component types is called standard and it is selected by default when a new BRAIN

object is created. The names of available libraries are the keys to a dictionary in

BRAIN called libs. The following code fragment shows that a newly created brain

has only one default library available, the standard one:

print b.libs.keys()

The output is a list containing just the name of the standard library:

[’standard’]

2.2.2 Selecting component libraries

A component type library can be selected as the default for use by supplying its

name to the BRAIN’s SelectLib() method:

b.SelectLib(’standard’)

The standard library does not need to be explicitly selected as above, though it does

no harm to do so. It is automatically selected when a BRAIN is created.

2.2.3 Seeing what component types are in a component li-

brary

A component type library contains a number of sub-dictionaries that contain neu-

ral modeling component types. The keys to the library define the categories of the

available components. The following code fragment
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print b.libs[’standard’].keys()

shows the following available component types:

[’comptypes’, ’spks’, ’chantypes’, ’spsgs’, ’cols’,

’celltypes’, ’sls’, ’syntypes’, ’lays’, ’sfds’]

The keys to the library dictionary in this case are neuron compartment types

(comptypes), spike profiles (spks), channel types (chantypes), post-synaptic gap

waveforms (spsgs), column types (cols), cell types (celltypes), synaptic long-term

Hebbian learning profiles (sls), synapse types (syntypes), layer types (lays), and

short term facilitation/depression profiles (sfds).

2.2.4 Seeing the members of a component type

Members of each component type can be viewed by simply printing the keys of

the appropriate dictionary, like this:

lib=b.libs[’standard’]

chantypes=lib[’chantypes’]

print chantypes.keys()

This generates the output list:

[’a-1’, ’m-1’, ’ahp-2’]

The contents of an individual member of the type can be printed by accessing the

dictionary element with the key that is the name of the type from the above list:

print chantypes[’ahp-2’]

which shows the following:
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CHANNEL Kahp

TYPE ahp-2

REVERSAL_POTENTIAL -80.000000 0.000000

M_INITIAL 0.300000 0.000000

M_POWER 2.000000 0.000000

CA_SCALE_FACTOR 0.000125 0.000000

CA_EXP_FACTOR 2.000000 0.000000

CA_HALF_MIN 2.500000 0.000000

CA_TAU_SCALE_FACTOR 0.003000 0.000100

UNITARY_G 0.054000 0.000000

STRENGTH 0.200000 0.020000

END_CHANNEL

Note that the element is printed in exactly the format that this type of element

appears in the NCS .in file. This is not an accident; printing any type of object

results in output that is suitable for direct inclusion in a NCS .in file. In fact, as we

shall see, printing the highest-level object, the BRAIN itself, results in a complete .in

file suitable for simulation with NCS.

2.2.5 Modifying a member of a component type

The individual NCS parameters associated with a component type element are

stored in a parameter dictionary called parms. The keys to this dictionary are (with

a few exceptions described later) simply the names of normal NCS parameters. Mod-

ifying the contents of a parameter dictionary element makes a change to that element

type, and this change will affect all instances of that element. For example, we could

change the STRENGTH of the channel ahp-2 with the following bit of code:

c=chantypes[’ahp-2’]

c.parms[’STRENGTH’]=’0.300000 0.030000’

print chantypes[’ahp-2’]

which gives the following output:
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CHANNEL Kahp

TYPE ahp-2

REVERSAL_POTENTIAL -80.000000 0.000000

M_INITIAL 0.300000 0.000000

M_POWER 2.000000 0.000000

CA_SCALE_FACTOR 0.000125 0.000000

CA_EXP_FACTOR 2.000000 0.000000

CA_HALF_MIN 2.500000 0.000000

CA_TAU_SCALE_FACTOR 0.003000 0.000100

UNITARY_G 0.054000 0.000000

STRENGTH 0.300000 0.030000

END_CHANNEL

Notice that the last parameter line, the STRENGTH, differs from the STRENGTH shown

in the output in Section 2.2.4.

2.2.6 Copying existing component types

The BRAIN Copy() method conveniently makes copies of component types. It

accepts three parameters: the dictionary that contains the object to be used as the

template for the new object, the string name of the key in that dictionary that will

be used as the template, and the string name for the result. The result is placed in

the same dictionary. For example, if instead of modifying the existing ahp-2 channel

we wished to create a new channel type named testchan based on ahp-2 we could

do this:

lib=b.libs[’standard’]

cnew=b.Copy(lib[’chantypes’], ’ahp-2’, ’testchan’)

cnew.parms[’REVERSAL_POTENTIAL’]=’-85.00000 0.000000’

print ’The available channel types:’

print lib[’chantypes’].keys()

print ’The new channel testchan just created:’

print lib[’chantypes’][’testchan’]

which prints:
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The available channel types:

[’a-1’, ’testchan’, ’m-1’, ’ahp-2’]

The new channel testchan just created:

CHANNEL Kahp

TYPE testchan

REVERSAL_POTENTIAL -85.00000 0.000000

M_INITIAL 0.300000 0.000000

M_POWER 2.000000 0.000000

CA_SCALE_FACTOR 0.000125 0.000000

CA_EXP_FACTOR 2.000000 0.000000

CA_HALF_MIN 2.500000 0.000000

CA_TAU_SCALE_FACTOR 0.003000 0.000100

UNITARY_G 0.054000 0.000000

STRENGTH 0.300000 0.030000

END_CHANNEL

Note that the REVERSAL_POTENTIAL differs from the example in Section 2.2.5.

In general, when creating a model in Brainlab, the modeler has two choices: to

create an element (CELL, LAYER, and so on) from scratch using the object creator

function for that class (c=brain.CELL(), l=brain.LAYER(), and so on), or instead,

use Copy() to clone an existing element from the library or from an object created

earlier in the script. Either approach is perfectly valid, and the designer should use

the one that is most efficient for the job.

2.2.7 Adding element instances to the model

So far we have been modifying component types and examining their containers,

the component type libraries. A brain model will also contain actual instances of

these types. In this section we will describe how to add those instances.

In NCS, cells cannot exist on their own but rather only as part of a higher level

structure called a column. A column is composed of one or more layers, which in turn

is composed of one or more groups of cells. Brainlab has COLUMN, LAYER, and CELL

objects that correspond to these structures. The general procedure for creating a
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brain model is to find the lowest level object in the standard component type library

that corresponds fairly closely to what you want to model and build up from there. By

“fairly closely” we mean that the effort required to modify the standard component is

less than the effort required to build it from scratch. Remember also that even if you

only wish to simulate a single cell or pair of cells, you must place them into columns

(there are also convenience BRAIN methods that simplify this).

For example, let us consider construction of a model of a four layer column. As-

sume we are satisfied with the existing cell types E and I (excitatory and inhibitory)

in the standard component library. We start by assigning a variable to each of these

cell types:

# Create a new empty brain model in variable b:

b=BRAIN()

# Get the standard component library from the brain:

lib=b.libs[’standard’]

celltypes=lib[’celltypes’]

# Variable ecell will hold the standard excitatory cell we will use:

ecell=celltypes[’E’]

# Variable icell will hold the standard inhibitory cell we will use:

icell=celltypes[’I’]

Next we will create an empty COLUMN container and add it to our brain:

# Put an empty column into the new brain:

c=b.COLUMN()

b.AddColumn(c)

print c

which shows the following output:

COLUMN

TYPE col1

COLUMN_SHELL col1_sh

END_COLUMN
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Notice that the column was automatically assigned the name (TYPE) col1 when

it was added to the BRAIN. Unless we specify a name (TYPE) explicitly, one will be

provided in AddColumn() since NCS requires that all such entities have a name. If we

didn’t care about the name, we could let Brainlab assign it for us while we continue

to reference the variable returned from the object instantiation any time we needed

to reference the column. Brainlab would simply handle all the text name references

behind the scenes, and we could ignore them. This is often quite a convenience. If

we did want to provide our own name for the COLUMN, we could pass it in the parms

dictionary as an argument when we construct the column, like this:

# Put an empty column named testcol into the new brain:

c=b.COLUMN({’TYPE’: ’testcol’})

b.AddColumn(c)

print c

to produce this:

COLUMN

TYPE testcol

COLUMN_SHELL testcol_sh

END_COLUMN

Any other parameters permitted by the NCS .in file for that item type could also be

passed in that argument1.

Now we will construct the layers inside the column. We will have four layers of

excitatory cells and one of inhibitory cells. (Note that it would be more biologically

accurate to have the inhibitory cells spread out among the other layers, and that

could easily be accomplished by adding a second cell group to each layer. For this

example we will put all inhibitory cells in a separate layer to simplify exposition.)

Here is the code fragment:

1In Python, braces {} specify a dictionary. The colon between the two strings separates a name/-
value pair. If there were more than one name/value pair, the pairs would be separated by commas.
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l1=b.LAYER({’TYPE’:’layL1’})

c.AddLayerType(l1)

l1.AddCellType(ecell, 10)

em=b.LAYER({’TYPE’:’layEM’})

c.AddLayerType(em)

em.AddCellType(ecell, 10)

er=b.LAYER({’TYPE’:’layER’})

c.AddLayerType(er)

er.AddCellType(ecell, 10)

es=b.LAYER({’TYPE’:’layES’})

c.AddLayerType(es)

es.AddCellType(ecell, 10)

# Common inhibitory cells for entire column.

i1=b.LAYER({’TYPE’:’layI’})

c.AddLayerType(i1)

i1.AddCellType(icell, 10)

print "Here is the column, with four layers:"

print c

print "Here is layer es, with 10 cells named ’E’:"

print es

and the output:

Here is the column, with four layers:

COLUMN

TYPE testcol

COLUMN_SHELL testcol_sh

LAYER_TYPE layL1

LAYER_TYPE layEM

LAYER_TYPE layER

LAYER_TYPE layES

LAYER_TYPE layI

END_COLUMN

Here is layer es, with 10 cells named ’E’:

LAYER

TYPE layES

LAYER_SHELL layES_sh

CELL_TYPE E 10

END_LAYER

Printing the column does not recursively print all the referenced sub-structures. Also,
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notice that only the highest level structure instance, the column, must be added to

the brain. The layers are added to the COLUMN object that directly contains them and

not to the BRAIN object. Likewise, the CELL objects are added to the LAYER object.

Printing the entire brain, however, recursively descends through all the objects that

have been added to the BRAIN. Each object is printed in its proper sequence so that

the combined resulting output has the proper format to be used as an input file for

NCS. The command

print b

results in the output:

BRAIN

TYPE testbrain

FSV 10000.00

JOB testbrainjob

SEED -99

DURATION 1.0

COLUMN_TYPE col1

COLUMN_TYPE testcol

OUTPUT_CELLS YES

OUTPUT_CONNECT_MAP YES

DISTANCE YES

END_BRAIN

# SECTION fill columns

COLUMN_SHELL

TYPE col1_sh

WIDTH 300.0000

HEIGHT 150.0000

LOCATION 10.0000 20.0000

END_COLUMN_SHELL

COLUMN

TYPE col1

COLUMN_SHELL col1_sh

END_COLUMN
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COLUMN_SHELL

TYPE testcol_sh

WIDTH 300.0000

HEIGHT 150.0000

LOCATION 10.0000 20.0000

END_COLUMN_SHELL

COLUMN

TYPE testcol

COLUMN_SHELL testcol_sh

LAYER_TYPE layL1

LAYER_TYPE layEM

LAYER_TYPE layER

LAYER_TYPE layES

LAYER_TYPE layI

END_COLUMN

# SECTION fill layers

LAYER_SHELL

TYPE layL1_sh

UPPER 80

LOWER 20

END_LAYER_SHELL

LAYER

TYPE layL1

LAYER_SHELL layL1_sh

CELL_TYPE E 10

END_LAYER

LAYER_SHELL

TYPE layEM_sh

UPPER 80

LOWER 20

END_LAYER_SHELL

LAYER

TYPE layEM

LAYER_SHELL layEM_sh

CELL_TYPE E 10

END_LAYER

LAYER_SHELL

TYPE layER_sh

UPPER 80
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LOWER 20

END_LAYER_SHELL

LAYER

TYPE layER

LAYER_SHELL layER_sh

CELL_TYPE E 10

END_LAYER

LAYER_SHELL

TYPE layES_sh

UPPER 80

LOWER 20

END_LAYER_SHELL

LAYER

TYPE layES

LAYER_SHELL layES_sh

CELL_TYPE E 10

END_LAYER

LAYER_SHELL

TYPE layI_sh

UPPER 80

LOWER 20

END_LAYER_SHELL

LAYER

TYPE layI

LAYER_SHELL layI_sh

CELL_TYPE I 10

END_LAYER

# SECTION cells

CELL

TYPE E

COMPARTMENT SOMA1 SOMA1_name 0.00000 0.00000 0.00000

END_CELL

CELL

TYPE I

COMPARTMENT SOMA1 SOMA1_name 0.00000 0.00000 0.00000

END_CELL

# SECTION stimulus

# SECTION stiminject
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# SECTION report

# SECTION compartments

COMPARTMENT

TYPE SOMA1

SPIKESHAPE AP_Hoffman

SPIKE_HALFWIDTH 10.000000 0.000000

TAU_MEMBRANE 0.015000 0.000500

R_MEMBRANE 200.000000 3.000000

THRESHOLD -40.000000 1.000000

LEAK_REVERSAL 0.000000 0.000000

LEAK_CONDUCTANCE 0.000000 0.000000

VMREST -60.000000 1.000000

CA_INTERNAL 100.000000 0.000000

CA_EXTERNAL 0.000000 0.000000

CA_SPIKE_INCREMENT 300.000000 20.000000

CA_TAU 0.070000 0.001000

CHANNEL ahp-2

CHANNEL m-1

CHANNEL a-1

END_COMPARTMENT

# SECTION channels

CHANNEL Kahp

TYPE ahp-2

REVERSAL_POTENTIAL -80.000000 0.000000

M_INITIAL 0.300000 0.000000

M_POWER 2.000000 0.000000

CA_SCALE_FACTOR 0.000125 0.000000

CA_EXP_FACTOR 2.000000 0.000000

CA_HALF_MIN 2.500000 0.000000

CA_TAU_SCALE_FACTOR 0.003000 0.000100

UNITARY_G 0.054000 0.000000

STRENGTH 0.200000 0.020000

END_CHANNEL

CHANNEL Km

TYPE m-1

REVERSAL_POTENTIAL -80.000000 0.000000

M_INITIAL 0.300000 0.010000

M_POWER 1.000000 0.000000

E_HALF_MIN_M -44.000000 0.200000

SLOPE_FACTOR_M 40.000000 20.000000 8.800000

SLOPE_FACTOR_M_STDEV 0.000000

TAU_SCALE_FACTOR_M 0.303000 0.000000

UNITARY_G 0.084000 0.000000

STRENGTH 0.060000 0.002000
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END_CHANNEL

CHANNEL Ka

TYPE a-1

REVERSAL_POTENTIAL -80.000000 0.000000

M_INITIAL 0.300000 0.010000

M_POWER 1.000000 0.000000

E_HALF_MIN_M -21.300000 0.200000

SLOPE_FACTOR_M 35.000000

SLOPE_FACTOR_M_STDEV 0.500000

V_TAU_VOLTAGE_M 100.000000

V_TAU_VOLTAGE_M_STDEV 0.000000

V_TAU_VALUE_M 0.000200 9999.000000

V_TAU_VALUE_M_STDEV 0.000000

H_INITIAL 0.600000 0.005000

H_POWER 1.000000 0.000000

E_HALF_MIN_H -58.000000 0.210000

SLOPE_FACTOR_H 8.200000

SLOPE_FACTOR_H_STDEV 0.500000

V_TAU_VOLTAGE_H -21.000000 -1.000000 10.000000 21.000000

V_TAU_VOLTAGE_H_STDEV 0.000000

V_TAU_VALUE_H 0.005000 0.001000 0.015000 0.020000 0.2500

V_TAU_VALUE_H_STDEV 0.000000

UNITARY_G 0.120000 0.000000

STRENGTH 0.100000 0.002000

END_CHANNEL

# SECTION spikeshape

SPIKESHAPE

TYPE AP_Hoffman

VOLTAGES -38.000000 -35.000000 -30.000000 -20.000000

-7.000000 15.000000 30.000000 20.000000

7.000000 -8.000000 -16.000000 -22.000000

-28.000000 -33.000000 -37.000000 -40.000000

-43.000000 -45.000000 -47.000000 -49.000000

-50.000000

END_SPIKESHAPE

# SECTION syn_psg

# SECTION syn_facil_depress

# SECTION syn_learning

# SECTION synapse
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Notice here that:

• Both the original column named by default col1 and also our explicitly named

column testcol are present, since they were both added to the BRAIN.

• The column named col1 has no layers and therefore no cells either. It will have

no functional role in any simulation.

• Since no synaptic connections have been specified, no synapse items were found

during the recursive descent of the objects added to the BRAIN object. Therefore

several sections at the end of the file (such as SECTION syn_psg) are empty.

2.3 Making connections in the model

In NCS, synaptic connections can be specified at three levels: from one cell group

to another cell group within a layer, from one one cell group in one layer to another

cell group in another layer in that same column, and from one cell group in one layer

to another cell group in another layer in a different column. Conventionally, the first

category of connections appears in a LAYER...END_LAYER block of the .in file, the

second category appears in a COLUMN...END_COLUMN block, and the last category is

made in the BRAIN...END_BRAIN block. (Note that in principle all connections could

be defined at the BRAIN level; all connections, once made, are functionally identical.

The only difference is the amount of information that is specified in the connection

request. Connections made at the lower levels make the obvious assumptions about

connection endpoints based on the context of the block where they are defined.)

In Brainlab, connections are made with the AddConnect(from, to) method. This

method exists in the BRAIN object, the COLUMN object, and the LAYER object. The
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arguments from and to are tuples that specify a (column, layer, cell group, compart-

ment) in the case of a BRAIN.AddConnect(), a (layer, cell group, compartment) in

the case of a COLUMN.AddConnect(), or a (cell group, compartment) in the case of

a LAYER.AddConnect(). Either the text TYPE name or a variable can generally be

supplied to AddConnect() to specify a column, layer, or cell group connection point.

In the case of a COLUMN or LAYER connect, partial information can be supplied in the

AddConnect() request and Brainlab will guess the connection point. The guesses are

made as follows:

1. If there is a designated output or input layer and cell group (see Section 2.4),

that will be chosen as the source or destination of a connection.

2. If there is only one candidate layer or cell group, then that will be used.

In the following example, we make a connection between two cell groups of a layer,

between two cell groups in different layers, and then a connection between two cell

groups in two different columns. We use a variety of different addressing formats,

sometimes a tuple giving several parts of an address, and sometimes only giving

one part of an address if the target is not ambiguous. The only restriction in tuple

addressing is that the items in the tuple be in descending order of specificity (starting

with column, then layer, then cellgroup, then compartment) and starting at the lowest

level that is not implied by the choice of which object’s method is being used (so for a

layer to layer connect in a column, the address tuple would never contain the column

name since the AddConnect() method being used is the column’s).
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syns=lib[’syntypes’] # get the synapses from the library

esyn=syns[’E’] # a standard excitatory synapse

# Connect this cell group to itself (a within-layer connection).

# We do this using the layer’s AddConnect() method

l1.AddConnect(ecell, ecell, esyn, prob=.1)

# Connect this cell group to a cell group in another layer.

# We do this using the column’s AddConnect() method

c.AddConnect((l1, ecell), i1, esyn, prob=.1)

# create another cloned column named ’c2’ to connect to:

cols=lib[’cols’]

c2=b.Copy(cols, c, ’c2’)

# Connections between columns use the brain’s AddConnect() method:

b.AddConnect((c, l1, ecell), (c2, l1, ecell), prob=.3)

2.4 Designated input/output layers and cell groups

If a LAYER object has the key _INPUT_LAYER set in its parameter dictionary, then

it will be given preference as a point of input into a COLUMN that contains that LAYER

if the connection point is not fully specified. This allows the designer to specify

minimum information in CONNECT requests to Brainlab. Similarly, the presence of

an _INPUT_CELLGROUP parameter in a cell group gives it preference as a point of

input into a LAYER. The _OUTPUT_LAYER and _OUTPUT_CELLGROUP work analogously

for output. (Note that these parameters are stored in the same parameter dictionary

as the NCS keyword parameters, but the presence of the leading underscore indicates

they are for internal use and they will be ignored during the .in file creation process,

rather than causing an NCS keyword line to be emitted as is the case for normal

parameters.)
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2.5 Stimulus and report requests

To define a stimulus input for a network using Brainlab, one approach is to create

a STIMULUS class and set the NCS keyword parameters as desired. Then create a

STIMULUS_INJECT object that references the STIMULUS object just created. As always,

the parameters desired for an object can be passed using the parms={} keyword

argument during object creation, or items in the parms dictionary can be set after

the object is created. Both techniques are shown in this example:

s=b.STIMULUS(parms={’MODE’: ’VOLTAGE’})

# add more parameters here to construct the report as desired

si=b.STIMULUS_INJECT()

si.parms[’TYPE’]=’demo-stiminj’

si.parms[’STIM_TYPE’]=s # reference to the stim created above

# only the STIMULUS_INJECT is then added to the brain:

b.AddStimInject(si)

If the TYPE parameter is not set for either a STIMULUS or STIMULUS_INJECT object,

an automatic name with a sequential number appended will be assigned, since NCS

requires a TYPE to accomplish the reference from STIMULUS_INJECT to STIMULUS. In

a Brainlab script, however, it is common practice (and quite convenient) to leave

the TYPEs undefined and do the reference from STIMULUS_INJECT to STIMULUS by

using the variable, rather than the text TYPE name. Brainlab will handle creating the

underlying text reference when the .in file is created.

Since many STIMULUS/STIMULUS_INJECTs follow a common usage pattern, Brain-

lab provides several convenience methods in the BRAIN class to speed up the pro-

cess. AddSimpleStim() automates several aspects including the creation of linked

STIMULUS/STIMULUS_INJECT objects:
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# c is a column object previously defined in the earlier example.

# Since c has more than one layer, and no default _INPUT_LAYER

# was specified when the column was created, we pass in a (col, lay)

# tuple for the target address of the stimulus.

# ’v’ means voltage stimulus

b.AddSimpleStim(’demo’, (c, es), ’v’, ampstart=.02, dur=(.1, .5))

Another common need is to apply a large number of individual voltage or current

spike stimuli at certain precise times. This is readily accomplished using Brainlab’s

AddSpikeStim() convenience method. In Section 3.1 we consider a real-world exam-

ple that makes use of that method, where the experiment required constructing many

distinct input patterns, each comprising dozens of spikes across a group of about ten

cells for a duration of about 300 milliseconds.

Report requests are treated in an analogous manner: create a REPORT object

manually, set the NCS keyword parameters as desired, and add the object to the

BRAIN. Or, use one of the convenience BRAIN class methods to speed up the process.

Refer to the brainlab.py online documentation[3] for complete options.

2.6 Simulating a network model

Since printing a BRAIN object outputs the NCS .in file for that model, one way of

running a simulation is to save that output to a file and then manually invoke NCS

using that file as input. Saving the Brainlab output to a file can be done in the script

itself, like this:

f=open(’simplebrain.in’, ’w’)

f.write(‘b‘)

f.close()

(The backquotes around the BRAIN object b are the Python idiom for “convert to

string” and they invoke the __repr()__ method for the object.) Or, if a Brainlab

script prints out the brain, simple shell redirection can be used to divert the output
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into a file for use by NCS. When using this technique, make sure that the Brainlab

script in question does not also print out any extraneous information in addition to

the model itself, because that will cause NCS to give a parsing error trying to load

the file.

A more convenient technique is to use the Run() method of the BRAIN. This

allows the model to be simulated within the context of the script’s execution flow.

When the simulation is complete, control returns to the script. The script can then

examine the results of the run (see Section 2.8) and make some decision based on those

results, or the script could simply adjust some model parameter(s) and simulate again.

The Run() method takes a number of optional arguments. Passing verbose=True

causes extra information about the remote job invocation to be printed. Passing

showprogress=True causes incremental progress messages to be printed. Passing

nprocs=<n> invokes the job on the indicated number of compute processor nodes.

Passing procnum=<n> causes the first processor in the set of processors for the job to be

the indicated processor number. (Note that in some installations, job queueing system

may prevent some of these features from working as described. The nprocs parameter

should work in almost all installations, however.) See the online documentation[3] for

all options.

Run() will return True if the job run was successful, or False or a Python excep-

tion if it was not. It is a good idea to invoke Run() within a try...except block if the

invoking script hopes to catch errors and retry. Status for a run is saved into a file

named <brainname>-nlog.txt. Examining the file will often give clues as to why a

job failed.

Note that even if the Run() method is used, it is often very helpful to save the .in
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file for later examination. Certainly this should be done at least a few times when

working with a new model, so that spot checks can confirm that the model is built

as you think it should be.

2.7 Viewing a network model in three dimensions

Though most network models are too complex to readily understand visually, it

is occasionally useful to try. Sometimes viewing a three dimensional rendering of a

network model will expose some obvious error, such as a completely disconnected

column or group of columns. Brainlab provides a module called netplot.py that

allows interactive three dimensional rendering of a network model.

In NCS, cell locations within a column and connections from cell group to cell

group are defined probabilistically in the .in file. Actual cell spatial locations and

synaptic connections are not made until the model is read in by NCS for simu-

lation. Special options in the BRAIN section of the .in file (OUTPUT_CELLS and

OUTPUT_CONNECTMAP) instruct NCS to save the cell location and synaptic connec-

tion information to text files once it has been defined. This information is used by

Brainlab’s netplot.py module to construct a three dimensional model for display.

Location information should be provided during creation of the model with Brain-

lab, otherwise the resulting display will probably not be helpful. Brainlab provides

default location information if none is supplied, but the resulting layout is usually

poor. Location information is stored in parameters with a leading underscore char-

acter in front of the normal NCS location keyword. The rationale for the leading

underscore is simply that in NCS, the location data is stored in SHELL structures

rather than the COLUMN or LAYER blocks themselves. Brainlab does not require the
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user to keep track of the SHELL blocks, since they map directly to the underlying struc-

tures, one for one, and Brainlab generates them only when the model is converted to

a .in file. So a sample usage would look like this:

x, y, w, h=(100, 200, 50, 80)

c=b.COLUMN({"_WIDTH":w, "_HEIGHT":h, "_XLOC":x, "_YLOC":y})

b.AddColumn(c)

l1=b.LAYER({"TYPE":"lay9", "_UPPER":90, "_LOWER":10})

l1.AddCellType(ecell, 10)

c.AddLayerType(l1)

The netplot.py model viewer can be invoked on saved <modelname>.cells.dat

and <modelname>.synapse.dat files from a prior run. Or, netplot.py features can

be invoked in a Brainlab script using the BRAIN’s ThreeDPlot() function. Remember

that in any case, the netplot.py command must be executed after the model has

been run through NCS, either on the command line or with the BRAIN.Run() method.

This is necessary to create the .dat files that contain the connection information. Just

as with the report plotting utilities, local .dat data files with the appropriate names

will be used if they exist, otherwise Brainlab will attempt to fetch them from the

remote execution directory. If they do not exist in the remote execution directory,

the attempt will fail.

The netplot.py supports two plotting modes: a minimally decorated version that

uses Bezier curves for synaptic connections and pyramids for cells (see Figure 2.1),

and a nicer looking version that uses shading, PolyCylinders from the GL Extrusion

library for axons and dendrites, more interesting shapes for the neurons, and several

other enhancements (see Figure 2.2).

Refer to the netplot.py online documentation[3] for complete options.
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Figure 2.1: An example of the netplot.py module of Brainlab, which allows interac-
tive 3D examination of a network model. This screen capture shows the low-realism
version of the display, which is most efficient for large network models or older display
hardware with poor 3D hardware acceleration.
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Figure 2.2: An example of the realism mode of Brainlab’s netplot.py module. This
allows 3D interactive exploration of models defined in Brainlab.
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2.8 Data loading utilities

Often a Brainlab script will examine the report output of an NCS run. (This

may be in place of, or in addition to, human examination of reports or graphs of

data.) Brainlab provides a number of utility functions to make loading NCS report

data into scripts easier and more efficient. Note that these are functions within the

brainlab.py module, and not methods within the BRAIN class itself.

The LoadSpikeData(brainname, reportname) function takes two mandatory ar-

guments, the name of the brain and the name of an NCS voltage report, and returns

a Python list containing a sublist that holds the spike times, given as a floating point

number in seconds, for each cell in the report. Several optional arguments allow se-

lection of start and end time ranges, setting the threshold voltage value that defines

a spike, and more.

The LoadReport(brainname, reportname) function takes two mandatory argu-

ments, the name of the brain and the name of any type of text NCS report. The

data is returned in a two dimensional array. When working remotely, files will be

automatically copied across the network on demand from the remote work direc-

tory to the local working directory, so that further accesses will be local and faster.

If only spiking data is required, LoadSpikeData() is often considerably faster than

LoadReport(), since LoadSpikeData() transfers only the spike times and not all the

voltage information across the network.

For other data loading utilities, refer to the online documentation[3].
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2.9 Report plotting utilities

Brainlab provides a number of convenience functions for report plotting, built on

the data loading utilities of Section 2.8 and the matplotlib[6] library. Refer to the

online documentation[3] for descriptions of all the plot functions and their arguments.

Plots are often highly customized, and frequently several subplots are combined

into one larger plot. Brainlab plotting functions are designed to simplify creation of

the most commonly desired plots and allow them to be combined together as subplots

of a larger plot. For example, the three-part plot in Figure 2.3 was generated with

the following code:

f=nextfigure()

np=3; pn=1

ts=150000 # start at 15 sec

dd=100000 # go for 10 more sec

subplot(np, 1, pn); pn+=1

ReportPlot("E0442", "EMUSERep", newfigure=False, cols=[75, 80, 85],

linelab=[’synapse 75’, ’synapse 80’, ’synapse 85’], xlab="",

xrange=(ts, ts+dd), legendloc=’center right’, ylab=’USE’)

subplot(np, 1, pn); pn+=1

SpikePatternPlot("E0442", ["EMRep"], newfigure=False,

xlab=’’, ylab=’EM cell number’, xrange=(15, 25))

locs, labels=xticks(); xticks(locs, [""]*len(locs))

legend((’Each dot is a spike’, ), loc=’center right’)

subplot(np, 1, pn); pn+=1

ReportPlot(’E0442’, [’EMRep’], newfigure=False, cols=[5],

linelab=[’EM cell 5’], xrange=(ts, ts+dd),

legendloc=’center right’)

savefig("demoplot.ps")
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2.10 Experimental features

A few Brainlab features are considered experimental and have not been extensively

tested in the current Brainlab version. We mention them here so that if a Brainlab

user encounters a need for similar functionality, this existing work can serve as a

reference or model.

2.10.1 Areas

Some brain modelers may have a need for a convenient building block at a level

higher than column. The AREA abstraction provides such a building block. In earlier

version of Brainlab, an AREA was defined as a two dimensional array of hypercolumns,

where each hypercolumn was a two dimensional array of columns. AREAs can be

interconnected easily with a number of pre-defined connection rules. For example,

one connection rule states that columns in one area are connected to the columns that

surround the spatially corresponding column in the target area. An earlier version of

the Brainlab AREA abstraction was used with some success in[17].

2.10.2 Enumerated Columns

The normal way of building models for use with NCS is to define one or more

groups inside a layer, each cell group containing some tens of cells, and specifying a

probability of connection between those cell groups. NCS then handles the details of

creating synapses between individual cells according to the supplied probability. The

actual connections are not made until NCS begins the simulation, and the user has no

say in which connections are actually made. Some experiments require a higher degree

of control, for example the ability to specify synaptic properties (like conductance or

USE) for individual synapses. One way of doing that would be to define each cell in
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its own column. Then each cell could be addressed by its own column name. However,

it may also be desirable to preserve the convenient normal notion of column, which

the single-cell columns approach would subvert.

An earlier version of Brainlab supported an “enumerated column” which for most

purposes was treated the same as a conventional column in the Brainlab script. How-

ever, when the model was converted to a .in file, every cell in each layer was assigned a

unique cell group name. This permitted each cell to be uniquely addressed in CONNECT

and REPORT and STIMULUS blocks. Every synapse could be specified explicitly when

needed, and normal column usage preserved.

2.11 Setting up Brainlab

Configuration options for Brainlab are stored in a .brainlabrc configuration file

in the working directory. Brainlab can be set up for remote operation (where jobs

are sent over a network to a computer or cluster) or local operation (where jobs are

executed on a local machine, or on a cluster that is managed by the local machine, such

as the headnode of a cluster). Future version of Brainlab may support an automatic

configuration and testing program to ease the setup process. Future versions may

also support different queueing models in addition to the current simple one where

jobs are immediately invoked using MPI.

2.11.1 Remote operation

For remote operation, Brainlab makes the following assumptions:

• The local machine has secure shell (ssh) access to the remote machine with no

password required (typically done via inserting the local user’s public key into

the appropriate authorized_hosts file on the remote machine).
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• The username on the local machine is the same as the username on the remote

machine. (This restriction will probably be eliminated soon.)

• There is a directory on the remote machine that contains the NCS executable,

a machine file named mach listing the usable cluster machines, and the Brainlab

libraries.

• The path of this remote directory is defined with the remdir= option in the

config file.

• The hostname of the remote machine is given in the configuration file using the

remotemachine= option.

• The option remoteexec=True appears in the config file.

• The local working directory also contains the Brainlab libraries.

2.11.2 Local operation

For local operation, Brainlab makes the following assumptions:

• The local working directory contains the Brainlab programs as well as the NCS

executable, and a machine file named mach listing the usable machines (which

may in some cases only be the local machine).

• The option remoteexec=False appears in the config file.

• The option remdir= appears in the config file and contains the name of the local

working directory.
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Chapter 3

A detailed example

The real strength of Brainlab is that it allows an experimenter to conduct more

complex experiments more conveniently. Real neuroscience modeling experiments

often involve multiple complex neural network model variants, complex input stimuli

and input protocols, and complex data analysis. Brainlab provides tools to make all of

these tasks easier, and equally important, it provides these tools integrated together in

one package. This last feature allows convenient automation and encapsulation: the

ability to keep all aspects of one experiment together, in one coherent, comprehensible,

and experimentally reproducible package: a Brainlab script.

The remainder of this chapter will consider some aspects of a more complex ex-

periment that is the subject of my doctoral research. In that research, I am testing

a proposed information processing feature of a cortical microcircuit. The unit of in-

formation transfer in that experiment is a spatio-temporal spike train pattern, which

is a set of spikes occurring over a set of cells over a period of time. The hypothesis is

that the layered cortical microcircuit is remembering correlations of these patterns.

Though much of the sample code in the following sections is generic Python, and not

Brainlab-specific, the entire example serves to make Brainlab usage more concrete in

the context of a real experiment. Only portions of the entire experiment are shown.
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3.1 Constructing complex stimulus patterns

The first step in the experiment is to construct the stimulus patterns that will

be applied, in a particular sequence, to the cortical microcircuit. We start with a

function that creates a simple list of spike times:

def RandSpikeList(dur, interspike, starttime=0, type=None, pmean=25):

s=[]

if type==’poisson’:

pn=dur*pmean*2

time=starttime

time+=float(poisson(pmean)/1000.0)

while time < (starttime+dur):

s.append(time)

time+=float(poisson(pmean)/1000.0)

return s

time=starttime

time+=int((random()*interspike)+10.0)/1000.0

while time < (starttime+dur):

s.append(time)

time+=int((random()*interspike)+10.0)/1000.0

return s

print "uniform:", RandSpikeList(.100, 25)

print "poisson:", RandSpikeList(.100, 20, type=’poisson’)

This gives us lists like this:

uniform: [0.029999999999999999, 0.047, 0.070000000000000007]

poisson: [0.014999999999999999, 0.048000000000000001, 0.078]

That defines an input for an individual cell for a time interval. We combine these

spike train lists to make a single input pattern, which specifies the inputs for a group

of cells. Then we will group a number of these patterns into sets. In the experiment

we are considering, we have two sets, one called “key” and another called “data”. This

example code shows the creation of just the “key” set:
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numkstim=max(keystimpat)+1

#print "numkstim", numkstim

keyinstim=[] # will contain a stim list for each cell

for i in range(0, len(keyin)):

tc=[]

keyinstim.append(tc)

for j in range(0, numkstim): # for each unique pattern . . .

sn=RandSpikeList(dur, interspike, starttime=0, type=type)

tc.append(sn)

This results in a set or spike patterns similar to that depicted in Figure 3.1. These

patterns are then applied as stimuli according to a stimulus protocol defined in the

list keystimpat, as shown in the following code fragment.
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Figure 3.1: A complex spike pattern set.
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stimstart=0.0

pn=0

for p in keystimpat: # for each repetition of stim

# p is the pattern number to apply starting at stimstart

if p >= 0: # pattern of -1 means don’t apply stim

for i in range(0, len(keyin)): # cell in input area

n=keyin[i] # n is cell to apply to

s=keyinstim[i][p] # s is list of spikes for cell

ns=[v+stimstart for v in s] # shift spike by stimstart

b.AddSpikeStim(n, ns, stimname="skey%d-%d" % (i,pn))

pn+=1

stimstart+=stiminterval

The AddSpikeStim() takes a list of spike times, in seconds, and ensures that appro-

priate STIMULUS blocks to cause a spike at the desired times. (There are actually

two underlying mechanisms Brainlab can use to accomplish this: creating a sepa-

rate STIMULUS block with a pulse applied at each desired time, or creating a sin-

gle STIMULUS block that references a file with appropriate data. Which of the two

underlying mechanisms is used should be transparent to the user and they can be

interchanged readily, but providing that the number of spikes to be applied does not

number more than about 100,000, the first method is preferred since no external files

are required.)

3.2 Genetic search of model parameters

Models are based on real-world parameters, but there is invariably some impreci-

sion in the value of these parameters. When imprecision is present in each of a set

of a dozen model parameters the result can be a nonfunctional or unbalanced model.

Consequently, sometimes an experimenter must conduct a search for a model with

certain properties by varying a number of the parameters and trying out the model,

and then trying again. Brainlab provides an easy platform for such a search, and also
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a convenient way to use a particularly powerful kind of search: genetic search. In

the following example, we create a chromosome that contains a set of brain parame-

ters and then launch a genetic search using the SciPy[11] package’s genetic algorithm

module. First we set up the chromosome and then start the genetic search:

genelist=[]

genelist.append((ga.gene.list_gene([2,3,4,5,6,7,8]), ’ntapecells’))

genelist.append((ga.gene.float_gene((.005, .05)), ’allmaxcond’))

genelist.append((ga.gene.float_gene((.005,.3)), ’allF’))

genelist.append((ga.gene.float_gene((.005,.3)), ’allD’))

genelist.append((ga.gene.float_gene((.005,.3)), ’poshebbdeltause’))

genelist.append((ga.gene.float_gene((.005,.3)), ’neghebbdeltause’))

genelist.append((ga.gene.list_gene([(float(x)/1000.0) \

for x in range(200, 801, 100)]), ’stimdur’))

genelist.append((ga.gene.list_gene(range(20,120,10)),’interspike’))

genelist.append((ga.gene.float_gene((.05, 1.0)), ’eresprob’))

genelist.append((ga.gene.float_gene((.05, 1.0)), ’eremprob’))

genelist.append((ga.gene.float_gene((.05, 1.0)), ’l1emprob’))

genelist.append((ga.gene.float_gene((.05, 1.0)), ’esthalprob’))

genelist.append((ga.gene.float_gene((0.0, 1.0)), ’L1L5prob’))

genelist.append((ga.gene.float_gene((0.0, 1.0)), ’L6L4prob’))

all_genes=[]

for (g, parmname) in genelist:

all_genes+=g.replicate(1)

mychrom.append(parmname)

this_genome.performance=E0Fitness

gnm=this_genome(all_genes)

pop=ga.population.population(gnm)

pop.evaluator=my_pop_evaluator()

galg=ga.algorithm.galg(pop)

settings={’pop_size’:16,’p_replace’:.8,’p_cross’: .8, \

’p_mutate’:’gene’, ’p_deviation’: 0.,’gens’:64,\

’rand_seed’:0,’rand_alg’:’CMRG’}

galg.settings.update(settings)

galg.evolve()

print "best:", galg.pop.best()

Note that in this example, some items in the chromosome are lists and some are

values within floating point ranges. The fitness evaluation function here is called
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E0Fitness(). It is given to the genetic algorithm as the performance method. The

fitness evaluation function looks like this:

def E0Fitness(self):

score=0.0

# get the chromosome values for this individual

actual=self.get_values()

allbd=0; allad=0; allbk=0; allak=0; anumposs=0

# to get a better picture of how good a parameter set is,

# run the model this many separate times to determine fitness

numruns=2

for rn in range(0, numruns):

brainname="E0_"+‘en‘

# get actual settings for this individual for all elements

# in chrom and stuff them into the brain parms, so brain

# we instantiate will use our evolved values

parms={}

pn=0

global mychrom

for parmname in mychrom:

parms[parmname]=actual[pn]

pn+=1

success=False

while not success:

try:

(bd,ad,bk,ak,numposs)=E0(parms=parms)

success=True

except:

print "got exception, will retry simulation"

print "results for this trial: %d %d %d %d %d" \

%(tn, rn, bd, ad, bk, ak, numposs)

allbd+=bd; allad+=ad; allbk+=bk; allak+=ak

anumposs+=numposs

print "overall results: allbd, allad, allbk, allak", \

allbd, allad, allbk, allak, anumposs

# create the overall fitness by combining results from all runs

# of this individual:

anumposs=float(anumposs)

fitness=float(allad + allak)/anumposs

return fitness



50

This function in turn invokes EO(), which handles the stimulus preparation (as out-

lined in Section 3.1) and invokes the BRAIN’s Run() method to perform the simulation.

Our experiment involves matching output patterns, and that must be done to deter-

mine the model’s fitness. Function E0() handles this work as well, and that is the

subject of Section 3.3.

3.3 Automated data analysis

In the experiment, we gather output reports from the NCS run and then compare

sets of spikes over groups of cells over a predefined period. The result is a metric for

how closely spatio-temporal spike patterns match. A depiction of the result of such

a comparison is in Figure 3.2. This plot was produced using conventional Python

list processing techniques and matplotlib scatter plots. Based on the results of the

matching, the genetic algorithm selects a new parameter set for each member of the

population and Brainlab makes adjustments to the model parameters for the next

round of simulations.
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Figure 3.2: A spike pattern match plot. Larger circles comprise a pattern that is to
be matched, and the overlaid smaller circles comprise the pattern that was found to
be the closest match.
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Chapter 4

Design and implementation issues

Several of Brainlab’s design choices deserve specific comment. These include the

rationale for the selection of the Python programming language, how Python language

features mesh with Brainlab’s object oriented design, Brainlab’s modular design, and

Brainlab’s remote execution model.

4.1 Python language features

Python is an open source, cross platform programming language. It is free of

charge and can even be used for commercial projects without complications. Sup-

ported platforms include Microsoft Windows, MacOS, and other Unix-like operating

systems including Linux, FreeBSD, and Solaris. The base Python language is con-

stantly being extended and made more powerful by hundreds of developers working

together across the world. In addition to the base language, there are dozens of ex-

ternal packages in various states of development, from polished to prototype. These

packages gradually move into the base distribution as they mature and if they are of

sufficiently wide interest.

Python is ordinarily compiled into bytecode and the bytecode is then interpreted

by a runtime engine. This is the same approach used by Java. It results in code
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execution that is generally faster than interpreted code. There is also an excellent

just-in-time compiler called Psyco[2] that converts a Python program’s bytecode into

directly executable machine language, on the fly, during execution.

Python is dynamically typed rather than statically typed, like C++ or Java.

Dynamic typing is extremely convenient for the programmer, though it may come at

some small performance cost.

Python is well known as an extremely clean and easy to read and understand

language. The most controversial aspect of Python is that indentation is used to

determine logical block level, rather than, for example, special tokens like the curly

braces of C, Perl, and Java or the begin...end blocks of MATLAB. The practical con-

sequence of Python’s choice is simply that programs cannot be improperly indented.

Anyone who has spent time trying to understand a MATLAB program where the logi-

cal blocks do not correspond to indent levels (which seems to be a very common state

of affairs in MATLAB code, for whatever reason) will appreciate Python’s choice.

There may be some mild inconvenience in moving a block from one indentation level

to another in a Python program, but that is seldom an issue with modern editors.

4.2 Python scientific community

Python has a large number of support library packages to make scientific com-

putation more efficient and powerful. Some of these packages are used in Brainlab,

including:

• matplotlib[6], a MATLAB-like plotting package

• PyOpenGL[10], OpenGL bindings for Python

• numarray[9], MATLAB-style array processing
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• SciPy[11], a set of scientific tools for Python including a genetic algorithm mod-

ule

One factor in selecting a language for a project is how many other people are already

using it for related purposes, since that affects the availability of tools and add-on

packages and also the likely interest among potential users. Based on Internet activ-

ity, the Tiobe Programming Community Index[1] estimates that the overall Python

programming community is 5 to 15 times as large as MATLAB’s. However, only a

fraction of Python’s programmers, perhaps 5 or 10%, are using Python as a tool for

scientific research. The scientific community seems to be recognizing that the ease of

use and scalability offered by Python and interest appears to be growing.

4.3 Python object orientation and Brainlab

Unlike many other languages where object orientation was added as an afterthought

(MATLAB, C, and Perl for example), Python was conceived from the outset as an ob-

ject oriented language. This is an important factor for managing large experiments.

(Python can also be used in a conventional, non-object-oriented fashion if desired,

which is convenient for small projects.) Python’s object orientation features are used

extensively in Brainlab.

The BRAIN, COLUMN, LAYER, and other objects are all implemented as Python object

classes. The __repr__() method for each object is overridden so that printing an

object results in text for that object in a format suitable for inclusion in the NCS

.in file. In the case of a lower-level object, this method just prints out the object

itself, but does not print any other objects that are referenced by the object being

printed. The BRAIN object’s __repr__() method, however, first recursively traverses



55

the entire tree of objects referenced from the BRAIN object and a list is composed

for each type of referenced object. Once all referenced objects have been collected

together, the entire NCS .in file is printed, starting with the BRAIN section, and

proceeding to all of the other sections of the .in file in the conventional order.

The lower-level classes are implemented as nested classes within the BRAIN class.

Note that they are not derived subclasses, but rather nested classes. Derived sub-

classes are appropriate where the subclass has most of the aspect of the superclass but

some additional features. In Brainlab the nested classes are not logically subclasses

of the BRAIN since they do not share the same characteristics as the super-object

but are merely contained by it. However, the lower-level classes do need access to

the component type libraries that are stored with the BRAIN class. If the lower-level

objects were entirely separate classes, they would not have convenient access to the

component type libraries. By making the lower-level classes nested within the BRAIN

class, they do have that access.

4.4 Brainlab modules

Brainlab consists of three functional modules (files):

• brainlab.py: This module is the only module that needs to be directly im-

ported by user programs. The brainlab.py module imports all other modules

necessary for using Brainlab. The brainlab.py module itself consists of conve-

nience functions for loading NCS report data, plotting common types of graphs

of NCS data using the matplotlib library, running simulations on a remote clus-

ter computer, and a few other functions. Refer to the online documentation[3]

for a complete list. Knowledge of the execution environment (host name of the
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compute cluster for NCS jobs, username for invocation of NCS jobs, and so on)

is restricted to this file.

• brain.py: This module defines the BRAIN class and the lower-level, nested, brain

modeling classes including COLUMN, LAYER, CELL and so on. The responsibility

of this module is the creation of an object oriented brain model and converting

it to a NCS .in format file for simulation.

• netplot.py: This module handles the three-dimensional graphical display of

neural networks.

4.5 Brainlab remote execution

Brainlab is designed primarily to run on the user’s workstation, and send jobs

across a network to be simulated on a different computer (or cluster). There are

several reasons for this focus. The user has more control over the software installed

on a personal workstation than on a typical group or departmental compute server or

Beowulf cluster, where it may be difficult to get installed the libraries necessary to run

Brainlab. Often data will be analyzed repeatedly, displayed and analyzed in a variety

of ways, and that is best done on a personal workstation so that specialized tools are

guaranteed to be available and also so that other users of the simulation environment

will not be affected. Also typically a personal workstation will have high-performance

display hardware that will work more efficiently with extensive graphing, perhaps in

three dimensions.

Since NCS reports are gathered on the compute cluster, Brainlab employs a smart

caching strategy to move those files, as necessary, to the workstation. When a user

requests a plot using NCS report data, the necessary files are copied on demand from
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the compute cluster. Further references to those files are made locally. If the user

is only interested in spike information rather than the full voltage information in a

report, that spike information is extracted from the full reports on the cluster before

the distilled file is copied back to the workstation automatically by Brainlab. This

results in a significant speedup.

Brainlab can also run directly on the machine where NCS does the simulation.
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Chapter 5

Thoughts on a next generation
NCS and future work

At this point, Brainlab is functional and has been used in my own experiments

quite extensively. Another member of our lab has made limited use of earlier versions

of the toolkit. A new experiment by another lab member has begun using Brainlab,

and members of an external laboratory have also expressed interest in using it. If NCS

becomes more widely used in other laboratories, we expect interest in Brainlab will

also increase. This user interest will largely drive the further evolution of Brainlab.

However, we have some thoughts on where future development might take Brainlab.

5.1 A next generation NCS

NCS is a complicated program, and even though the transition from version 3

to version 5 resulted initially in a net simplification for a time, making changes to

NCS gets increasingly more complicated as time goes on and features are added.

A surprising amount of this complexity seems to arise from the simulation engine

attempting to manage more information about the model than it strictly needs to

simulate the network. Right now, the simulation engine has a fairly complicated file

parsing module that reads the .in input file and builds a flat representation of this



59

model in memory based on that (this is called the GCList representation in NCS). The

.in input file has some hierarchical structure including notions of columns and layers

and cell groups, as we have seen. In practice though, users often end up subverting

the intent of these structures, by, for example, compressing all cell groups into a single

layer of a column, for simplicity in creating the model. However, the final memory

representation of the network that is used for the simulation in NCS is flat.

This leads to a thought: what if NCS were stripped down so that it only contained

the portions necessary to simulate the simpler, flatter, memory representation of the

model? Brainlab, or something like it, could handle the model building and present

a flat network, in memory, to NCS. Some benefits of this would be:

• The NCS code would be simpler with higher level biological structures removed.

The cell and channel and synapse logic would have to remain, but information

about layers and columns could be eliminated.

• The NCS code would be simpler with .in file parsing logic removed. As we

have argued in this thesis, that complexity is not worth much anyway since the

.in file is not a directly usable representation for complex modeling anyway.

• NCS would be more easily used for simulating general spiking neural net-

works that do not conform to column/layer structure. Much synfire chain

research[14, 15] and liquid state machine research[23, 24] utilizes homogenous

spiking networks without explicit biological structure above the level of neuron

and synapse. Such networks can be simulated with the current version of NCS,

but only by expending some effort to step around the enforced column/layer

paradigm of the NCS .in file.
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• Many new biological features could be implemented without touching the NCS

C code. That means they could probably be done more easily and by less tech-

nical users. For example, recent work in our laboratory involved implementing

reciprocal connections in the NCS C code. This required a fairly significant

investment in coding and testing time. It is likely that in the proposed ar-

rangement, this work could be done entirely in a Brainlab-like environment in a

high-level scripting language where it could be done more quickly and flexibly.

A counterargument might point out that the simulation engine benefits from hints

derived from the column/layer structure of the .in file, so that highly interconnected

portions of the network can be placed onto individual nodes to increase simulation

efficiency by minimizing network traffic. However, since the simulation engine has

the full map of connections, it could perhaps make better decisions about allocating

portions of a network across the compute resources based on that rather than based

on the structure that the .in file would provide. Or if necessary, hint information

could be passed from the modeling portion (Brainlab), based on the known biological

structure of the model, to the simulation portion (NCS) along with the flat model

network map.

5.2 Future work

The next minor version of Brainlab will incorporate a number of enhancements.

These enhancements will minimally affect the current API so that current experiment

scripts will continue to run with few or no changes. Some of the planned changes

include:

• A few BRAIN class methods will become brainlab.py functions. In particular,
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BRAIN.Run() will likely become deprecated, in place of brainlab.Run(BRAIN).

The motivation for this is that logically, the brain modeling portion of Brainlab

(brain.py) should not have any dependencies on the broader simulation and

data analysis tools (provided in brainlab.py.)

• Data loading and report plotting functions will be cleaned up and standardized

to accept a new, general, cell addressing scheme that is currently implemented

in only some functions.

• Simulation jobs may be executed in subdirectories automatically, or at least as

an option. This should make it easier for an experimenter to maintain large sets

of files for an experiment and reduce directory clutter in the working directory.

• Support for different queueing systems in remote execution environments will

probably be enhanced. The current system makes rather broad assumptions

about job execution capabilities on the remote compute cluster. This change to

Brainlab will probably coincide with the onset of use of a queueing system on

our own compute cluster.

• AREA and enumerated column support will be retested to ensure that they work

with the current Brainlab code base.

• Some convenience functions for executing multiple parallel jobs may be added.

This is possible in the current environment but requires some knowledge of

Python to implement; the basic procedure is to use Python threading to invoke

each BRAIN.Run() in a separate thread context. A Brainlab convenience func-

tion could make this commonly-desired feature accessible to a larger class of

users.
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We are hopeful that the use of NCS will continue to grow beyond our own lab, and

that Brainlab can grow with it. We fully expect and hope that many future features

will be demanded by an eager group of users conducting experiments of their own.
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